

Proc. High Performance Computing Symposium of the Advanced
Simulation Technologies Conference (Society for Modeling
Simulation International), Arlington, VA, April 18-22, 2004.

LBNL-55522

Graph-Theoretic Methods in Simulation Using

SPARK

by

Edward F. Sowell
Dept. of Computer Science

California State University, Fullerton
Fullerton, California, 92834

 sowell@fullerton.edu

Michael A. Moshier
Dept. of Mathematics and Computer Science

Chapman University
Orange, California 92866
 moshier@chapman.edu

Philip Haves

Lawrence Berkeley National Laboratory
Berkeley, California 94720

 phaves@lbl.gov

Dimitri Curtil
Lawrence Berkeley National Laboratory

 Berkeley, California 94720
 dcurtil@lbl.gov

April 2004

This work was supported by the Assistant Secretary for Energy Efficiency
and Renewable Energy, Office of the Building Technologies Program of
the US Department of Energy, under Contract No. DE-AC03-76SF00098.

Graph-theoretic Methods in Simulation Using SPARK

Edward F. Sowell
Dept. of Computer

Science, California State
University, Fullerton
Fullerton, California,

92834
sowell@fullerton.edu

Michael A. Moshier

Dept. of Mathematics
and Computer Science,
Chapman University

Orange, California 92866
moshier@chapman.edu

Philip Haves
Lawrence Berkeley

National Laboratory
Berkeley, California

94720
phaves@lbl.gov

Dimitri Curtil
Lawrence Berkeley

National Laboratory
Berkeley, California

94720
dcurtil@lbl.gov

Keywords: reduction, decomposition, differential-algebraic
systems, graph theory, hierarchical, equation based
ABSTRACT
This paper deals with simulation modeling of nonlinear,
deterministic, continuous systems. It describes how the
Simulation Problem Analysis and Research Kernel
(SPARK) uses the mathematical graph both to describe
models of such systems, and to solve the embodied
differential-algebraic equation systems (DAEs). Problems
are described declaratively rather than algorithmically, with
atomic objects representing individual equations and macro
objects representing larger programming entities
(submodels) in a smooth hierarchy. Internally, in a
preprocessing step, graphs are used to represent the problem
at the level of equations and variables rather than
procedural, multi-equation blocks. Benefits obtained include
models that are without predefined input and output sets,
enhancing modeling flexibility and code reusability, and
relieving the modeler from manual algorithm development.
Moreover, graph algorithms are used for problem
decomposition and reduction, greatly reducing solution time
for wide classes of problems.
After describing the methodology the paper presents results
of benchmark tests that quantify performance advantages
relative to conventional methods. In a somewhat contrived
nonlinear example we show O performance as opposed

to for conventional methods and O for sparse
methods. Another more realistic example deals with the
model of a complex air-conditioning system. Comparative
results show the number of simultaneous equations was
reduced by a factor of 4 and the execution time reduced by a
factor of ~15-20 when compared to a popular simulation
program for problems in this domain. Both of these
examples offer good opportunities for decomposition and
reduction. A third example treats two dimensional heat
transfer in homogeneous media. In this case the lack of
opportunity for decomposition and reduction results in a
still-large and sparse iterative problem. However, even for
this example a sparse option within SPARK yields solution

speeds comparable to a custom coded solution using state-
of-the-art sparse packages.

)(n
)(3nO)(2n

Finally, we describe recent extensions that allow developers
to mix SPARK’s graph-theoretic modeling paradigm with
conventional procedural methods.
BACKGROUND
We are concerned here with enhanced modeling flexibility
and solution efficiency of systems of nonlinear DAEs. Such
equation systems, which are deterministic rather than over-
or under-determined, arise in nearly all engineering and
scientific analysis, but perhaps most notably in simulation
of physical and biological systems. Rather than the
conventional vector-matrix representation, the methodology
discussed here relies upon the mathematical graph, i.e., a set
of nodes connected by a set of edges, as the principal data
structure for both model representation and solution. While
this is not the first time graph theory has been used in
connection with equation system solving, previous graph
theory usage has been, most often, as an aid in sparse matrix
manipulation. In the work reported here, graph-theoretical
methods are applied directly to the nonlinear equations.
Thus the graph, rather than the matrix, is the primary
structure for storing the problem structure and data, and
graph algorithms are employed to determine a solution
sequence, operating directly on the nonlinear equations.
Moreover, the model equations are stored individually,
rather than packaged into modules at run time, and treated
as equations, rather than as formulas with assignment
(algorithms). Simultaneous equations manifest as cyclic
graphs that are dealt with by iteration, but, importantly, the
size of the iteration vector is reduced through use of a cutset
reduction algorithm. Moreover, the problem graph is
decomposed into strongly connected components, providing
a very powerful divide-and-conquer mechanism. Since
simulation is often applied to engineered system comprising
discrete components interconnected in sparse networks, the
equation sets produce sparse graphs that are often
susceptible to such reduction methods. Equation inverses
are found beforehand using symbolic manipulation
(computer algebra) software.

mailto:sowell@fullerton.edu
mailto:moshier@chapman.edu
mailto:phaves@lbl.gov
mailto:phaves@lbl.gov

The SPARK project at The Berkeley Lab is based on work
carried out at the IBM Los Angeles Scientific Center in the
early 1980s (Silverman, Jurovics et al. 1981; Sowell and
others 1984; Sowell, Taghavi et al. 1984; Levy and Low
1988). The first implementation at The Berkeley Lab, called
SPANK, was by Jeffery Anderson (Anderson 1986),
working with Edward F. Sowell, Walter F. Buhl and others.
The basic graph-theoretic ideas, e.g., matching on bipartite
graphs and cutting digraphs, came directly from
contributions to the IBM project by Hanoch Levy and David
Low. There is a remarkable, yet coincidental, similarity
between the IBM work and that of Edwards (Edwards
1982), which was going on at approximately the same time.
GRAPH-THEORETIC BASIS
The process that leads eventually to numerical solution
begins with graph-theoretic analysis of the problem, carried
out in several stages. The objective of the first step,
matching, is to select an appropriate equation to calculate
each problem variable. To accomplish this, equation objects
and problem variables are represented as the two disjoint
node sets of a bipartite graph (bigraph), Figure 1.

Figure 1 Matching
The upper nodes represent equations while the lower
represent variables. Each edge incident upon an equation
node indicates the existence of an inverse defined for the
connected variable node in this equation. When viewed in
this way, the selection of an equation for each problem
variable is a matter of finding a complete matching on the
graph, as indicated by the bold edges in the figure. There are
several well-known bipartite matching algorithms (Hopcroft
and Karp 1973; McHugh 1990). Upon completion of the
matching there is a one-to-one relationship between
equation objects and problem variables. Also, the matching
identifies the particular inverse needed for each equation,
e.g., E1 needs to be solved for where is
an inverse of equation E1. The simulation environment
includes symbolic tools for automatic generation of inverses
for algebraic equations. If an inverse cannot be found for a
particular variable in an equation, that edge can be omitted
from the bigraph, thus preventing a matching requiring it.
Since there are often many possible matchings for the
bigraph, a suitable one is usually found, but if not an inverse
can be specified in residual form, thus forcing the target
variable to be a break variable (see below).

)(1 xfy =)(1 xf

Subsequent processing steps require another graph to
represent the problem. A directed graph (digraph) is formed
in which there is a node for every problem variable.

Keeping in mind that every variable is now associated with
a particular equation, the selected equation is also associated
with the node, e.g., E1 is associated with the y node in the
above example. Each node can then be thought of as
producing a value for the associated variable using the
matched inverse equation. Directed edges are added to the
graph showing dependency. Thus, Figure 2 derives from
Figure 1.

Figure 2 Digraph
The graph in Figure 2 is a simple, acyclic digraph that leads
directly to a solution sequence; the nodes need only be
“fired” in topological order1. More commonly, scientific
problems involve equation sets that require simultaneous
solution. Such problems produce graphs with closed circuits
or cycles, e.g., Figure 3, requiring more graph-theoretic
processing to get a solution sequence.
The graph in Figure 3 has an obvious property other than
circuits, and that is strongly connected components, or
strong components for short. These are maximal sets of
nodes and edges in which every node can be reached from
every other node. See (Aho, Hopcroft et al. 1983). These are
circled with dashed lines in the figure.

Figure 3 Cyclic digraph.
The importance of this characteristic in the current context
is each strong component represents a subproblem that can
be solved separately. Thus the strong component at the
lower right, SC1, can be solved by itself, followed by
solution of SC2. Discovering this structure in the problem
graph is called strong component decomposition, for which
there are well known algorithms, including one based on
depth first search (Aho, Hopcroft et al. 1983). This
algorithm is performed in SPARK as the first processing
step of the digraph.2 Fortuitously, the same algorithm also
numbers the components in the order in which they must be
solved, e.g., SC1 followed by SC2 in the example.
By the strict definition of a strong component, any node that
is not in a cycle is itself a strong component. For example,
Figure 2 has three strong components in this formal sense,

1 Visit order in which all predecessors are visited first.
2 Strong component decomposition is equivalent to reducing
a matrix to block diagonal form.

although none have cycles. Acyclic groups of such
degenerate strong components can also occur as parts of
more complex graphs having cyclic strong components
elsewhere. SPARK is able to recognize these structures and
treat them as “acyclic components” for computational
efficiency. That is, they are solved as a group, but
sequentially rather than iteratively.
Once decomposed into components each cyclic component
is processed with a cutset algorithm. A cutset is defined here
as a set of nodes that, if removed, would break all cycles in
the component. Cutsets are not unique. Indeed, the set of all
nodes is a cutset, albeit a large one. While finding the
minimum cutset is known to be an NP-complete problem,
there are several good algorithms for finding relatively
small cutsets (Levy and Low 1988).
The numerical solution sequence for a component with a
non-zero cutset requires iteration. This is accomplished by
“cutting” the graph at each cutset node. This can be viewed
as inserting a new fictitious node to which the “from” end of
all edges leaving the cut node are connected, thus leaving
the cut node output disconnected. This is exemplified in
Figure 4 where T is the cut node and T’ is the fictitious
node. This creates an acyclic graph that can be processed in
topological order, just as in the Figure 2 example. Estimated
values for the cut node variables are fed into the graph as
inputs to the fictitious node and the graph is “fired,” i.e.,
traversed in topological order executing the inverse
associated with each node. In other words, the acyclic
graph allows a residual to be calculated for each cut variable
using the associated inverse. The cut digraph can thus be
viewed as a vector-valued function of the input cutset, i.e.,

)(xgx ′= , which allows us to construct a conventional
Newton-Raphson solution process, iterating until the change
in each variable between successive iterations becomes
smaller than the prescribed relative tolerance.

Figure 4 Cut digraph

Summarizing, the described graph-theoretic methodology
comprises the following steps:

1. Construct and match a bipartite graph to identify an
equation for each problem variable. Symbolic
software is used to find the needed inverse of the
matched equation.

2. Construct a digraph based on the matching.
3. Decomposition in to strong components, possibly

acyclic as well as cyclic.

4. Find small cutset and construct N-R iterative
problems for each cyclic component

5. Process all components in topological order.
HIERARCHICAL MODELING
Although SPARK operates at the equation level for graph-
theoretic processing, and at run time, this level is not
convenient for the modeler. Instead, a hierarchical language
is provided. The basic modeling entities are atomic classes
that represent individual equations, and macro classes that
represent larger entities by incorporation of atomic classes
and other macro classes. Both atomic and macro classes
have ports that are linked together by the user with a simple
network language to form larger models, such as macro
classes and problems. This allows top down design in terms
of models of major system components, followed by bottom
up implementation. This hierarchy is flattened to equations
and variables for processing as described in the previous
section.
The user develops mathematical models for physical
components in terms of equations, rather than algorithms.
Each equation is written as an atomic class. C++ functions
represent all feasible, explicit inverses of each equation, as
well as those for which only residual form is possible; these
inverses become part of the class. Atomic class ports
include all variables that are present in the equation, with no
distinction as to input or output. A symbolic tool can be
used to automatically create an atomic class from an
equation.
Macro classes, formed through composition from atomic
and other macro classes, represent higher-level component
models.3 That is, the user defines a macro class by declaring
instances of atomic classes and other macro classes, and
linking them at their ports. Macro class creation is also
automated with symbolic tools.
Both atomic classes and macro classes can be saved in
libraries for reuse.
Because neither inputs nor outputs are designated in the
class definition, we have input/output free or multilateral
models. That is, the direction of computation is arbitrary.
Being comprised of atomic classes, macro classes are also
multilateral. As a result, which variables are inputs and
which are calculated is not resolved until the overall
problem is defined. At that time, the wanted input set is
specified by a keyword in the network language. Thus,
within the mathematical limits of requiring a well-posed
problem, one does not have to redesign the entire model in
order to change from solving for x given p to solving for p
given x.

3 SPARK is based on classes and objects, but does not
support conventional OOP inheritance.

DYNAMIC MODELS
What we have described above is a modeling language and
solution strategy for algebraic problems. However, the ideas
are readily extended to dynamic problems. The most
straightforward extension is to introduce a new problem
variable for the derivative of every dynamic variable x,
and declare an integrator object that relates x and .
Integrator objects are instances of classes that access saved
histories of the dynamic variable, and employ them
according to well-known numerical integration formulas,
open or closed. This approach was described by Sowell and
Buhl (Sowell and Buhl 1988). More recently, more
elaborate built-in integration methods have been added to
SPARK in order to afford proper error control. For example,
VisualSPARK 2 implements the Euler and the Trapezoidal
integration methods with support for local error control
through adaptive time stepping. These are described in the
SPARK User’s Manual (Sowell 1998), and more recent
online documents (

x&
x&

http://simulationresearch.lbl.gov).
IMPLEMENTATION
In the current SPARK implementation, the problem
definition is first processed by the parser, scattering all
macro objects into atomic objects and generating a flat
problem representation in a file. All graph-theoretic
processing is done in a second step called setup. The setup
program emits a C++ source file in which the entire problem
solution sequence, and all parameters, is embedded in data
structures. The highest-level structure in this file is an
instance of a C++ class called Problem. The Problem class
has an array of Component objects, each of which contains
the solution sequence for one of the strong components of
the graph. This sequence is basically a list of pointers to
functions representing the selected atomic object inverses at
each node. The file is compiled, as are any new atomic
classes, and everything is linked with a fixed library (or at
run time with a dynamic link library) containing the fixed
elements of the solver. The output of the link step is an
executable that solves the problem numerically by stepping
through the list of components, and through the solution
sequence within each component. A component with cycles
is converged with Newton-Raphson iteration on the cutset
vector. There is a time loop to repeat the process if the
problem is a dynamic one.
There are several other ways the concepts described
previously could be implemented. We have experimented
with interpretive implementations, eliminating the need for
problem compilation and linkage entirely. Recently, a
“dynamic” building mechanism has been added to
VisualSPARK 2 in which the static loading mechanism
based on the C++ source file is completed at runtime. This
technique allows SPARK to operate without a C++ compiler
and linker, as long as all atomic classes are compiled
beforehand and placed in DLLs. This approach improves

productivity during model development with a modest
reduction in runtime efficiency.
SYMBOLICS
A basic assumption in the methodology is the availability of
at least one, and preferably more, inverses for the equation
represented by each atomic class. This is needed for the
matching process to succeed. Obtaining explicit inverses for
the equations usually requires no more than high school
algebra, but still can be tedious if there are many classes to
be developed. Fortunately, computer algebra tools, e.g.,
Maple and MACSYMA, are now commonly available to aid
in this task. SPARK comes with a free symbolic tool called
sparksym, based on a licensed shareware program called
Mathomatic, that allows the user to automatically construct
not only the inverses but also the entire atomic class based
on an entered equation. Macro classes can also be
constructed by sparksym. Although the Mathomatic-based
tool is limited to relatively simple equations, it may be
sufficient for many users. If more powerful tools are needed,
either Maple or MACSYMA can be installed and optionally
used as the symbolic engine in sparksym.
USER INTERFACES
SPARK can be executed at the command line, or through
graphical user interfaces. At the command line one uses a
conventional text editor to create class and problem files.
Then a single command carries out the parsing, setup,
compilation and linkage steps. The symbolic tools can also
be executed at the command line to automate creation of
new classes. Graphical user interfaces, on the other hand,
provide the user with an integrated development
environment (IDE) in which problems and classes can be
created, built and executed. The symbolic tools are also
available within the IDE.
There are two such IDEs, one that comes with VisualSPARK
released by The Berkeley Laboratory
(http://simulationresearch.lbl.gov), and another that comes
with WinSPARK released by Ayres Sowell Associates, Inc.
(http://www.ayressowell.com). The two interfaces reflect
different developmental heritages, with WinSPARK
exhibiting more of the look and feel of Microsoft Windows,
and VisualSPARK that of Unix, although the latter has been
ported to Windows. Ostensibly, both packages have the
same SPARK core, but in practice the two products
sometimes get out of synchronization, with differences
among newer features. Documentation for both products is
available online.
PERFORMANCE BENCHMARKS
In addition to the advantages already noted, e.g., a
declarative hierarchical modeling style and multilateral
object-based models, the graph-theoretic modeling
paradigm also offers a significant performance advantage
over conventional and sparse methods for some problem
classes. In our benchmarking work we have attempted to

http://gundog.lbl.gov/
http://gundog.lbl.gov/
http://www.ayressowell.com/

show asymptotic performance of the methodology, as
implemented in SPARK, and to compare it to the more
commonly used sparse matrix methods and other simulation
software. Like any such effort, our study was limited by
time and resource constraints. With these constraints in
mind, we chose problems representative of both those well
suited and those poorly suited to the methodology, as well
as one real-world problem for which the performance of
another simulation program was available from earlier
work. Naturally, we used software conveniently available to
us for comparison. While not exhaustive, we feel that these
benchmarks are sufficient to show, at the least, the promise
of the methodology. Here we only summarize these studies
and results, which have been more fully reported elsewhere
(Sowell and Haves 2001).

A Good Problem for the Methodology
The first benchmark problem was selected to represent
problems well suited to the graph-theoretic methodology. It
derives from a problem in the SPARK Users’ Manual
consisting of four highly nonlinear equations. For the study,
this set of equations was implemented as a SPARK macro
class, which was then instantiated n/4 times to get a problem
of size n. Obviously, every instance is then a separately
solvable problem, although all are presented to SPARK as a
single problem. SPARK is able to discern this structural
regularity from the problem graph and partition it into n/4
strongly connected components. It develops that each has a
cutset of size 1. Consequently, during the numeric phase of
the solution, n/4 single-variable iterative solutions are
carried out.
For comparison purposes, this equation set was also solved
with three other methods. First, a Newton-Raphson
nonlinear solver nlsolve was handcrafted for this equation
set, with the problem size as an input parameter. In this
solver, the four equations were coded in a single function
that was called as needed for calculation of the residual
functions and the Jacobian. The matrix functions from
SPARK were used to calculate the Jacobian numerically and
solve the linear set for new estimates of the iteration
variables. Second, a sparse Newton-Raphson solver
spnlsolve was written using the sparse LU solve function
from the Meschach sparse matrix package (Stewart and
Leyk 1994). Comparative run times are shown in Figure 5.

0

5

10

15

0 1000 2000 3000 4000

Number of Equations

R
un

 T
im

e
(s

ec
)

NLSolve SPNLSolve SPARK

Figure 5 Comparative run times

As would be expected, the experimental results show
performance for the full matrix solution. The solver

based on the Meschach sparse matrix functions shows much
better performance, approximately . Also as
expected, SPARK is much better than the sparse
implementation, showing about O . In order to confirm
that these dramatic solution speed improvements are not
attributable to the particular sparse package chosen, this
problem was also coded for solution with the SuperLU
sparse package (Demmel, Gilbert et al. 1999). If not the
most advanced software in this category, it appears at least
to be among the most current. The upshot of the results
(Sowell and Haves 2001) is that although SuperLU is
considerably faster than Meschach (15 seconds. versus 48
seconds for n = 2000), SPARK is still much faster. More
importantly, it is clear that SuperLU, like Meschach, is
performing at O as compared to for SPARK.

)(3nO

)(2nO

)(nO

)(n

)(2n

A Poor Problem for the Methodology
The second benchmark problem, purposely chosen not to be
well suited to the graph-theoretic methodology, is Laplace’s
equation in two dimensions. This equation, among other
things, models heat transfer in a thin, square plate with a
uniformly distributed heat source and uniform boundary
temperature. The problem is discretized by dividing the
square into a uniform grid of specified size. Each cell in the
grid is represented by a nodal temperature T and is
governed by a heat balance equation

ji ,

)()(
)()(

,1,1,,

,1,1,,,

jijijiji

jijijijijsi

TTTT
TTTTq

+−

−+

−+−+

−+−=

where jsiq , is the heat source rate per unit surface area.
The internodal conductance is assumed to be 1. This
problem was coded for solution with Meschach using sparse
LU factorization.4 For comparison, a program was written
to generate SPARK problem and input files for the same
equation system. The grid size was varied between 3 and
45, yielding equation set sizes between 9 and 2025. Both
SPARK and the Meschach-based solver were compiled with
the same compiler and optimization options. Also, care was
taken to be sure that the same problem, in terms of equation
count and math operations, was being solved in both cases.
Then, because we knew this problem provided little
opportunity for reduction or decomposition, the SPARK

4This choice was made since Cholesky factorization and
sparse conjugate gradient iteration applies only to
symmetric positive definite matrices, a condition satisfied
by the Laplacian but not often found in general simulation
problems

solver was modified to optionally use either sparse or non-
sparse vector-matrix data structures and functions from
Meschach when updating the solution vector. The results
showed that while Meschach outperformed the standard
version of SPARK, a version with sparse handling of the
reduced Jacobian performed essentially the same as
Meschach (Sowell and Haves 2001).5

A Real World Problem
Going beyond the rather contrived examples above, the
graph-theoretic methodology was also evaluated by
modeling an airflow system employing discrete-time
controllers. The example used was a typical air-
conditioning airflow network and its associated control
loops, a problem involving significant computational burden
(Haves, Norford et al. 1998). A number of steady state
component models were implemented as SPARK objects,
including variable speed centrifugal fans, flow diverters,
flow mixers and control dampers. In modeling air flow, a
square law dependence of total pressure drop on flow rate
was used above a critical flow rate and a linear dependence
was used below the critical flow rate to avoid known
computational problems when the assumption of turbulent
flow is applied to low flow rates. Dynamic models included
flow sensors, pressure sensors, discrete-time proportional-
plus-integral (PI) controllers and rate limits in fan speed
controllers. In order to assess the benefits of using SPARK
methods, a base case and two reference cases were
constructed. The base case was modeled with SPARK in
the normal manner, allowing the graph-theoretic techniques
to perform reduction of the problem graph. The two
reference cases were (a) The system modeled using the
HVACSIM+ program (Clark 1985), and (b) the system
modeled using SPARK, but inhibiting the normal problem
reduction techniques. The use of the two reference cases
enables the benefits of the graph-theoretic techniques to be
separated from the effects of program architecture. For all
three cases, the simulation problem was a series of set-point
changes for each controller followed by a disturbance
caused by progressive closing of the variable volume
terminal boxes. In addition to these comparisons directed at
assessment of the importance of reduction, a side study was
performed to determine whether “breaking” of control loops
offers computational advantage. The interest in this derives
both from the need to model sample-and-hold in discrete-
time controllers, and from the introduction of artificial
delays as a computational device to speed solution. Results
are shown in Table 1.

5 The current version of VisualSPARK offers a sparse
option.

Table 1Results for air-conditioning system

Time (s) Iteration Variables Control
HVAC
SIM+

SPARK HVAC
SIM+

SPARK

Intact 1135 48.8 62 15
Broken 785 52.7 55 15

In the first comparison, “Control loops Intact,” the flow
network equations and the controller equations are solved
simultaneously. The main result is that SPARK is 15 - 20
times faster than HVACSIM+. The obvious reason for the
speedup is that SPARK achieves a 4:1 reduction in the
number of variables in the iteration vector relative to the
conventional program. In the second comparison, “Control
loops Broken,” the set of simultaneous equations
representing the airflow network and those representing the
control system are solved sequentially. This corresponds to
breaking the algebraic loops, e.g., by introduction of a
sample-and-hold in the controller or an artificial delay.
Whereas a significant benefit was gained from breaking the
control loops when using HVACSIM+, there was no such
benefit when using SPARK. The reason for this, as
discussed in another paper (Haves and Sowell 1998), is that
SPARK finds two break variables that not only break the
two control loops but also break other computation loops, so
the control loops are broken regardless.
Table 1 shows results for a particular flow network.
Experiments with a number of different flow network
configurations show that SPARK achieves similar
reductions in problem size across a range of different
network topologies typical of fluid distribution systems.
This suggests that the application of the problem reduction
methods used in SPARK to such problems will result in
increases in computational efficiency similar to those
reported here.
DISCUSSION
The above results confirm that the graph-theoretic
methodology offers significant reduction in solution times
relative to both conventional and sparse matrix methods in
the solution of certain kinds of nonlinear equation systems.
This is borne out most dramatically by the contrived
nonlinear benchmark problem, but is also quite clear from
the air-conditioning control application. However, in the
case of the example involving Laplace’s equation, we
observe that without using sparse methods itself, SPARK
has difficulty competing with sparse solvers. Understanding
why this occurs is important in order to guide improvement
of the graph-theoretic methods, and to delineate properly the
class of problems where one should expect the most
dramatic improvements with them.
To understand the observed differences in run times, it is
important to note that at the heart of the Newton-Raphson
nonlinear solution process is the solution of a linear system
in order to get the correction vector for iteration variables.

In general, this is an O process. Even with sparse

methods it is typically O . Consequently, anything that
can be done to reduce the size of the iteration vector has a
powerful effect, especially for large problem size. SPARK
does exactly this in two separate ways: strong component
decomposition and cutset reduction. Decomposition is
possible when the equation set turns out to be a sequence of
separately solvable problems. SPARK routinely detects this
property and carries out the decomposition without user
intervention or custom coding. For example, the nonlinear
benchmark problem with 100 equations and variables is
decomposed into 25 subproblems each of size 4. This alone
would reduce the run time by a factor of 625. Cutset
reduction refers to reducing the sizes of the iteration vectors
(and Jacobians) within the subproblems. Since a cutset of
size 1 was discovered in each component of our example,
the iteration vectors are all of size 1, so the overall
theoretical run time reduction is by a factor of 40,000. Of
course, the theoretical efficiency gain is only partially
realized due to overhead, but this analysis clearly explains
the observed excellent performance for the Good and Real
examples above. It also explains why we should expect
little or no advantage for the Poor example. Highly
interconnected problems like this one offer no opportunity
for decomposition, and make cutset reduction much more
difficult. But since many real simulation problems have
portions that are poor in this sense, as well as sparsely
connected portions that are ideal for graph-theoretic
methods, the challenge is to be sure that the graph-theoretic
implementation at least does no worse than conventional
sparse methods in the Poor parts of the problem.

)(3n
)(2n

It should also be noted that while reduction to block
diagonal form, which is equivalent to strong component
decomposition, can be done with sparse matrix packages,
and is indeed done in some nonlinear equation solvers
(Klein 1991), one should not assume that it is routinely done
by all sparse solvers. Moreover, we are aware of no
nonlinear solver other than SPARK that routinely does
iteration vector reduction by use of small cutsets, in spite of
the fact that the concept is well known, at least in the
theoretical sparse analysis community. The reasons for this
apparent lack of widespread use of these important
techniques may be complications attendant to the vector-
matrix problem formulation commonly used in nonlinear
solvers. We know for certain, on the other hand, that when
the nonlinear problem is represented directly as graphs at
the equation-variable level, routine application of the
techniques is more or less intuitive, and the algorithms are
straightforward.
MIXED PARADIGMS
SPARK is only one example of how the graph-theoretic
modeling paradigm can be implemented. Many others
applications of the paradigm are conceivable, including

“mixed paradigm” projects in which graph-theoretic
methods are used in some places while procedural methods
are used in others. To enable such usage, recently Ayres
Sowell Associates has implemented modifications to make
SPARK internal methods directly accessible to model
developers in non-SPARK environments. With one feature,
called SPARK Model Functions (SMF), developers can
create SPARK system models of arbitrary size and
complexity that can be called as ordinary functions by
foreign executive programs. WinSPARK menus provide
tools that automatically generate SMFs, placing them in
DLLs for easy runtime access by other software. As a
demonstration of possible usage, we have created a DLL
that integrates with Microsoft Excel, thus providing SPARK
generated models as custom user functions in this
ubiquitous application (Sowell and Moshier 2003). Another
example of using SPARK as a calculation kernel provides a
link between SPARK and the EnergyPlus program.
Individual EnergyPlus components are implemented as
SPARK problems, and each such problem is instantiated
and invoked at runtime on demand using the atomic class
DLLs. (See SPARK Problem Driver API documentation at
http://simulationresearch.lbl.gov/)
Another feature, called Multi-Value Objects (MVOs), allows
a developer to use a foreign procedural function within a
SPARK model. This is useful when the there is a legacy
model written in perhaps FORTRAN, C, or C++ and time or
other factors argue against re-implementation as an
equation-based SPARK macro class. MVOs are also very
useful when there is a set of equations within a system that
are numerically problematic for a global solver, but which
can be reliably solved simultaneously with well-known
procedural algorithms. In both situations, there are multiple
equations being solved for multiple variables
simultaneously within the procedural model, in contrast to
the SPARK policy of working with the individual equations
and variables, solved globally. In WinSPARK, the MVO is
treated as a macro object when developing the SPARK
problem definition, but at run time the procedural function
is invoked, returning any number of values to be propagated
through the problem graph exactly like values calculated in
the normal manner. WinSPARK offers symbolic tools to
automatically generate MVOs. An alternative MVO
implementation is used in VisualSPARK.
CONCLUSIONS
The principle conclusion that can be drawn from this work
is that graph-theoretic techniques, as implemented in
SPARK, can outperform conventional and sparse matrix
methods for solution of problems that can be decomposed
and/or reduced. Roughly speaking, execution time savings
will be O where r is the ratio of the largest strong
component cutset size to the number of equations in the
problem, and m is the number of strongly connected

)(3mr

http://simulationresearch.lbl.gov/

components into which the problem partitions. The
reduction techniques produced close to the maximum
reduction in the benchmark air-conditioning problem, and
there are indications that similar reductions can be expected
in the broad class of problems involving flow networks and
their associated control systems. Reductions in execution
time of more than an order of magnitude can be expected
relative to full-matrix solvers such as HVACSIM+. While
direct benchmarks were not carried out for simulators of
flow networks that use sparse solvers, our indirect tests
suggest that the sparse methods employed in such programs
will not be comparable to SPARK for problems in this class.
This is because sparse packages such as SuperLU do not
automatically perform decomposition or reduction,
notwithstanding the fact that handcrafted solvers based on
sparse methods should be able to do so. On the other hand,
problems characterized by a high degree of
interconnectivity, such as energy, mass, or momentum
transport in homogenous media, allow very little reduction
and therefore are not prima fascia candidates for graph-
theoretic solution methods. However, since the reduced
Jacobian in homogeneous transport problems is still very
sparse, conventional sparse matrix methods can be
beneficially applied after decomposition and reduction.
When this is done, the graph-theoretic solution method can
be competitive with sparse solvers even for homogeneous
transport problems, and probably superior for system
simulations in which reducible and homogeneous transport
components must both be solved.
In addition to performance improvements, the graph-
theoretic paradigm allows convenient hierarchical, equation-
based modeling. Additional benefits include input/output
free models, meaning that the model does not have to be
altered just because the input set changes, and relieving the
modeler from the burden of algorithm development.
Finally, we call attention to several ways that the graph-
theoretic methodology used in SPARK can be incorporated
in other modeling environments. In particular, SPARK
models can be incorporated into non-SPARK environments,
and vice versa.
ACKNOWLEDGEMENTS
This work has been sponsored in part by the Assistant
Secretary for Energy Efficiency and Renewable Energy,
Office of the Building Technologies Program of the U. S.
Department of Energy.
REFERENCES
Aho, A. V., J. E. Hopcroft, et al. (1983). Data Structures
and Algorithms. Reading, MA, Addison Wesley.
Anderson, J. L. (1986). A Network Language for Definition
and Solution of Simulation Problems, Lawrence Berkeley
Laboratory
Clark, D. R. (1985). HVACSIM+ Building System and
Equipment Simulation Program (Reference Manual and

User's Guide), National Institute of Standards and
Technology (NIST)
Demmel, J. W., J. R. Gilbert, et al. (1999). SuperLU User's
Guide. Berkeley, CA, University of California, Dept. of
Computer Science
Edwards, D. W. (1982). Robust Decomposition Techniques
for Process Design and Optimization. Chemical
Engineering. London, University of London: 243
Haves, P., L. K. Norford, et al. (1998). “A Standard
Simulation Testbed for Evaluation of Control Algorithms &
Strategies.” Transactions of the American Society of
Heating, Refrigerating, and Air-conditioning Engineers
104(1).
Haves, P. and E. F. Sowell (1998). "The Application of
Problem Reduction Techniques Based on Graph Theory to
the Simulation of Nonlinear Continuous Systems". EuroSim,
Manchester, England, Society For Computer Simulation.
Hopcroft, J. and R. Karp (1973). “A n^5/2 Algorithm for
Matching on a Bipartite Graph.” SIAM J. Algorithms.
Klein, S. (1991). Engineering Equation Solver (EES).
Madison, F-Chart Software
Levy, H. and D. W. Low (1988). “Contraction Algorithm
for Finding Small Cycle Cut Sets.” J. Algorithms 9: 470-
493.
McHugh, J. (1990). Algorithmic Graph Theory. Englewood
Cliffs N.J. 07632, Prentice Hall.
Silverman, G., S. A. Jurovics, et al. (1981). “Modeling and
Optimization of HVAC Systems Using Network Concepts.”
ASHRAE Trans. 87(Pt. 2): 585-597.
Sowell, E. F. (1998). SPARK Users' Manual. Placentia, CA
92871, Ayres Sowell Associates, Inc.
Sowell, E. F. and W. F. Buhl (1988). "Dynamic Extension
of the Simulation Problem Analysis Kernel (SPANK)".
Proceedings of the USER-1 Building Simulation
Conference, Ostend, Belgium, Soc. for Computer
Simulation International.
Sowell, E. F. and P. Haves (2001). “Efficient Solution
Strategies for Building Energy System Simulation.” Energy
and Buildings 33(4): 291-415.
Sowell, E. F. and M. A. Moshier (2003). "Application of the
SPARK Kernel". Building Simulation '03, Eindhoven,
International Building Performance Simulation Association.
Sowell, E. F. and others (1984). "Conventional Control
Models for HVAC Network Simulation". Proceedings of the
Workshop on HVAC Controls Modeling and Simulation,
Georgia Institute of Technology.
Sowell, E. F., K. Taghavi, et al. (1984). “Generation of
Building Energy System Models.” ASHRAE Trans. 90(Pt.
1): 573-86.
Stewart, D. E. and Z. Leyk (1994). "Meschach: Matrix
Computation in C". The Centre for Mathematics and Its
Applications, The Australian National University.

	spark04.pdf
	ABSTRACT
	BACKGROUND
	GRAPH-THEORETIC BASIS
	HIERARCHICAL MODELING
	DYNAMIC MODELS
	IMPLEMENTATION
	SYMBOLICS
	USER INTERFACES
	PERFORMANCE BENCHMARKS
	A Good Problem for the Methodology
	A Poor Problem for the Methodology
	A Real World Problem

	DISCUSSION
	MIXED PARADIGMS
	CONCLUSIONS
	ACKNOWLEDGEMENTS
	REFERENCES

